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Dark Matter

To reproduce:

Rotation curves

Relic density

Stable; Early universe production

To distinguish:

Cosmological history

Interactions with SM

Small-Scale Structure 1 / 35
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Axions

Largest scales:

X Pressureless

X Stable; Relic density

X Early universe

(Just like every other DM model)

Unique features

History:

◦ Interactions at high scales
◦ Thermal / Relativistic production
◦ Domain walls

Interactions:

◦ Direct Axion Detection (ADMX, etc.)

Small Scale Structure:

◦ This talk
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Dark Matter at Small Scales

[Weinberg et al., 1306.0913]Signs of self-interactions?
Nontrivial dark sector?
Dark matter structures matter
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Take Home Message

In this talk, focus on axion dark matter.

Axions are still extremely well-motivated DM candidate

Natural parameter space unconstrained

Highly nontrivial substructure at sub-galaxy distance scales

Small scale structure ⇔ Large density fluctuations (of asteroid, planet, star sizes)
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Quick Review

5 / 35



Axion Cosmology 2.0 Motivation Joshua Eby March 20, 2018

Outline

Axion / Dark Matter Fundamentals (Zooming out)

Small-Scale Structure in Axion Cosmology (Zooming in again)

◦ Axion miniclusters
◦ Axion stars
◦ Dense axion stars

Conclusions
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Axion Cosmology on Largest Scales

Production: (1) Classical field (2) Topological defects (3) Thermal component
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Axion Field History

1. U(1)PQ symmetry broken at scale f

2. Massless NGB, axion , a(x) = f θ(x)

3. Potential tilted at Λ; mass m = Λ2

f
6= 0

4. Oscillations commence at Tosc

QCD axion:

3a. Tilt: Λ = ΛQCD

4a. Oscillations: Tosc ' ΛQCD

Axion-like particle (ALP)

3b. Tilt: Λ free

4b. Oscillations: 3H(Tosc) ' m(Tosc)

5. Relic density related to misalignment angle θ0

Low-energy potential: V (θ) = m2 f 2 (1− cos θ)
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Phase Transition
Case 1: f below inflation scale

Ωa,0 ≡
ρa,0
ρc
∼
(

f

1012 GeV

)7/6

〈θ0
2〉

Case 2: f above inflation scale

Ωa,0 ≡
ρa,0
ρc
∼
(

f

1012 GeV

)7/6

θ0
2
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Zoom In (x1)
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Density Contrasts

Large distance scales: Expand potential V (θ) = m2 f 2 (1− cos θ) ≈ m2 f 2

2
θ2

Small Fluctuations:

Different patches choose θ0 ∈ [0, π]

δρ

ρ̄
=

m2 f 2
√
〈θ0

2〉δθ
1
2
m2 f 2 〈θ0

2〉
∼ 2 δθ

θ0
∼ [0, 2]

Overdensities: “Axion Miniclusters”
[Hogan and Rees, 1988]

And larger ones:
[Fairbairn et al., 1707.03310]
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Minicluster Properties

At ΛQCD , ρa = (1 + Φ)ρ̄ [Kolb and Tkachev astro-ph/9311037]

→ ρmc ≈ 140Φ3(1 + Φ)ρ̄(Teq) ≈ 3× 10−14 g

cm3
Φ3(1 + Φ)

R ∼ 2× 106 km

Φ(1 + Φ)1/3

(
M

10−12M�

)1/3

Huge occupation number: today, for ρDM = 0.4 GeV
cm3 ,

N ∼ ρDM

m4 δv 3
∼ 1026 (virialized axion with m ∼ 10−5 eV)

Early times: classical field in expanding universe, θ̈ −∇2θ + 3H θ̇ + m2 sin θ = 0

Late times: classical field coupled to gravity, i ψ̇ = − 1

2m
∇2ψ + Vg ψ + Vint ψ
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Anharmonic Effects

-π -
π

2

π
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π
θ
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2
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θ̈ −∇2θ + 3H θ̇ + m2 sin θ = 0
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Increasing Density

Start from θ = θ0 at t = tosc , evolve until oscillations stabilize

θ̈ + 3H θ̇ + m2 sin θ = 0
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Minicluster Mass

Large Density Contrasts! [Fairbairn et al., 1707.03310]
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Lensing Constraints

[Fairbairn et al. 1707.03310]
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Minicluster Radius

Different question: At fixed MMC , how does density evolve?

E [ψ]

N
=

1

N

∫
d3r K [ψ] + W [ψ] + Vint [ψ]

Recall overdensity ρ = (1 + Φ)ρ̄:

For Φ & 30, trelaxation < age of Universe to
form ”axion star“, ground state of the
system

10 100 1000 104 105 106
-10

-8

-6

-4

-2

0

R [km]

E
n
e
rg

y
P

e
r

P
a
rt

ic
le

Φ=1Φ=30

Φ=70

Φ=1200

ASt

RMC ~
2 × 106 km

Φ (1 +Φ)1/3

17 / 35



Axion Cosmology 2.0 Axion Stars Joshua Eby March 20, 2018

Zoom In (x2)
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Axion Miniclusters 6= Axion Stars

Minicluster size / mass determined by cosmological factors : DM density at zQCD ,
Hubble size, etc.

Axion star size / mass determined by ground state configuration of classical
equation of motion

! No reason to suppose these are the same!

Even if fASt ∼ 1% component of dark matter, can have huge impact!
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Axion Stars
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Axion Stars

In axion star, leading self-interaction −λφ4 important

Energy has local minimum

Mass/Radius relation M ∝ 1
R

Maximum mass

Mc '
(

f

6× 1011 GeV

)(
10−5 eV

m

)
10−11M�

Minimum radius

Rc '
(

6× 1011 GeV

f

)(
10−5 eV

m

)
200 km

N=.85Nc

N=.9Nc

N=.95Nc

N=Nc

0.05 0.10 0.50 1 5 10

- 10

- 8

- 6

- 4

- 2

0

[JE, Leembruggen, Suranyi, Wijewardhana

1608.06911]
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Lensing from Axion Stars

Axion stars are denser than miniclusters, but weakly constrained by lensing

Mc '
(

f

6× 1011 GeV

)(
10−5 eV

m

)
10−11M�

Rc '
(

6× 1011 GeV

f

)(
10−5 eV

m

)
200 km
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Collision Rate

Collisions with Earth are (usually) pretty rare [JE et al., 1701.01476]

Number

NASt '
FDM MDM

MASt,0
' FDM × 1023 ×

(
10−11M�
MASt,0

)
Cross section

σi = π(RASt + Ri)
2

(
1 +

vesc
2

v 2

)
→ Rate

Γi ' NASt σi
Ni v

Vgalaxy

If you want O(1/year), require

10RE . RASt . 106 RE , M . 10−16M�
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Axion Star Collisions

In collision with earth, ρDM → ρDM(t)!
In any one detector, see a large ’blip’
Time-correlated detectors:
Global Network of Optical Magnetometer to
search for Exotic physics (GNOME)
[Kimball, JE, et al., 1710.04323]
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Other Collisions: Ordinary Stars

N� � NEarths! [JE et al., 1701.01476]

Additional gravity can decrease Mc ⇒ collapse

For QCD, typically Rs � RAS

Γ ∼ 3000FDM
collisions

year · galaxy

0.01 0.10 1 10 100 1000

0.2

0.4

0.6

0.8

1.0

Collapse

Stable

Depends stellar density D
Nearly all collisions near Mc cause
collapse
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Zoom In (x3)
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Some Miniclusters Too Heavy

Some MMC > Mc,ASt . Then what do they collapse to?

[Adapted from Fairbairn et al. 1707.03310]
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Dense Axion Stars

[JE, Leembruggen, Suranyi, Wijewardhana 1608.06911]

Above Mc , collapse

R → 0 corresponds to φ→ f or θ → π

Can’t just truncate at φ4

Short range repulsive int’s at small R ,
classically stable dense axion stars

[Braaten et al., 1512.00108]
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Relativistic Contributions

Dense axion stars have large binding energies ⇒ m ' E ⇒ SR corrections
[JE, Suranyi, and Wijewardhana, 1712.04941]

Kinetic energy:

−∇
2

2m
→
√

1− ∇
2

m2
−m

[Guth et al., 1712.00445]

Self-interaction:

V (θ) = m2 f 2 (1− cos θ)

≈ m2 f 2

2
θ2 − m2 f 2

4!
θ4 +

m2 f 2

6!
θ6 − ...

Higher mode expansion: E , 3E , 5E , ...
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Mass Distribution of Axion Stars

1000 105 107 109
1

1000

106

109

1012

M [f 2/m]

R
[1
/m
]
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Ongoing: The NR Limit

Standard procedure: φ̈−∇2φ− λ

3!
φ3 → i ψ̇ = − 1

2m
∇2ψ − λ

8m2
|ψ|2 ψ with

φ =
1√
2m

[
e−imtψ + e imtψ∗

]
How do we organize corrections?

[Mukaida, Takimoto, Yamada, 1612.07750]

Modes of φ:

φ =
1√
2m

∞∑
ν=1

[
e−iνmtψν + h.c

]
Effective interaction +

λ2

2304m5
|ψ1|4ψ1

[Namjoo, Guth, Kaiser, 1712.00445]

Modes of ψ:

ψ =
∞∑

ν=−∞

e iνmtψν

Effective interaction − 17λ2

768m5
|ψ0|4ψ0
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As we know...

”All things that have form eventually
decay“ -Orochimaru

(If they have no symmetry protecting number conservation)
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Decay: End of the Story

Axions: No number conservation
Leading decay rate depends on choice of EFT?

”φ-EFT“ → [JE, Suranyi, Wijewardhana,
1512.01709, 1705.05385]

3 ac → af dominates

Rate Γ ∝ m exp−(EB/m)−2

”ψ-EFT“ → [Braaten, Mohopatra, Zhang,
1609.05182]

Particles on-shell, no 3a→ a

Dominant rate 4a→ 2a suppressed

But: Dense axion star = ”Sine-Gordon Oscillon“, known classical lifetime
[Wilczek et al., 1710.08910]

τ ∼
(

10−5 eV

m

)
10−7 sec

Seems like dense axion stars decay extremely fast, but there may be more to the story
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Conclusions

Zooming in to small-scale axion structures, tells an interesting story:

Dilute background with average density Ωa =
ρ̄a
ρc
∼
(

f

1012 GeV

)7/6

〈θ0
2〉

Miniclusters of ”typical“ density ρmc ∼ 200ρ̄a

Unusually dense miniclusters relax fast, others may fragment, towards the ground
state of the system, dilute axion stars , of typical density ρASt ∼ 1010ρmc

Above a critical mass, can collapse further towards dense axion stars of typical
density ρdense ∼ 1018ρASt

The finale: Dense axion stars seem to decay very quickly to relativistic axions!
(Need to understand process better)

Each of these is a unique handle for understanding axion dark matter !
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Thanks to:

Zuckerman STEM Leadership
Program

Collaborators

Fermilab for the invitation

All of you!
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Backup Slides
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Comoving Energy

θ̈ − 3H θ̇ + m2 sin θ = 0
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MC Phenomenology

Femtolensing and Picolensing [Kolb and Tkachev astro-ph/9510043]

Microlensing [Fairbairn et al. 1707.03310]

...though could be affected by minicluster destruction [Tkachev et al. 1710.09586]

Important for ”direct detection“ axion
experiments:

If axions are exceedingly ”clumpy“, we
might have to wait for a collision with
axion ”clump“

”Clumpier“ → Lower collision rate

Alternative: The Global Network of
Optical Magnetometers to search for
Exotic physics (GNOME) [Kimball et al.

1710.04323]
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Variational Method: Minimize Axion Star Energy
Self-interaction energy of an ASt, in the non-relativistic limit:

W (ψ) = −m2 f 2
∞∑
k=0

(−1)kak
[ ψ∗ψ

2m f 2

]k+2

The total energy

E (ψ) =

∫
d3r

[ kinetic︷ ︸︸ ︷
|∇ψ|2

2m
+

gravitational︷ ︸︸ ︷
1

2
Vgrav (|ψ|2) +

self-interaction︷ ︸︸ ︷
W (ψ)

]
We make an ansatz for the wavefunction ψ(r) and compute E :

Rescale: Energy e, Radius ρ, and Particle number n

e(ρ) ≡ E (ρ)

mN δ
=

α

ρ2
− β n

ρ
− 1

δ

∞∑
k=0

(−1)kγk
(n δ
ρ3

)k+1

δ ≡ f 2/MP
2 � 1 α, β, γk ansatz-dependent constants

Minima of E w.r.t. ρ are stable bound states, axion stars!
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Collapse of Dilute ASts
A dilute ASt can collapse if e.g. its mass exceeds Mc . Variational approximation of the total energy
E (ρ) lends itself directly to a classical collapse analysis:1

LO: Collapse to black hole.

Full axion potential: Collapse from
dilute to dense ASt state!

However: Possible quantum mechanical effects lead to decay of ASts.
Axions are real scalars ⇒ No symmetry protects axion number

Can decay through a→ 2γ (in free or condensed state)

Inside the condensate, novel decay mechanisms are allowed through self-interactions:2

◦ Microscopic picture: N ac → N ′ ac + j af
◦ Macroscopic picture: AN → AN′ + j af

Leading order process: Emission of single relativistic axion, momentum p =
√

9E 2
0 −m2 ≈

√
8m

1Leading Order: Chavanis (1604.05904); Full axion potential: (1608.06911)
2(1512.01709); Braaten/Mohopatra/Zhang (1609.05182); Mukaida/Takimoto/Yamada

(1612.07750)
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Collisions: 2 Axion Stars
Energy functional changes to

E2AS

m (N1 + N2) δ
=

α

ρ2
− β (n1 + n2)

ρ
− γ0 (n1 + n2)

ρ3
+ ...

If N1 + N2 > Nc , collapse!

Long time for collapse to be completed:
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Relativistic Classical Field Analysis

This is the framework used by Kaup (for Λ = 0) and by Colpi et al. (for Λ� 1):
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where the rescaled variables are x = m r, σ =
√

4π G φ, Ω = µ0/m (µ0 the eigenenergy of one
boson), and Λ = λMP

2/(4πm2)
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RB for Axions

Expectation values of EKG:

〈N |Gµν |N〉 = 8π G 〈N |Tµν |N〉
〈N − 1| [DA− V ′(A)] |N〉 = 0

The resulting equations of motion take the form
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RB for Axions (2)

Metric functions:
A = 1 + δ a, B = 1 + δ b

EKG at leading order in δ = 8π f 2/MP
2:
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,
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Z ′ − εµ2(1 + δ a − δ b)Z + 2 (1 + δ a) J1(Z )
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RB for Axions (3)

EKG at leading order in δ and ∆ =
√

1− εµ2:

a′(x) =
x

2
Y (x)2 − a(x)

x
,

b′(x) =
a(x)

x
,
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x
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8
Y (x)3 + [1 + κ b(x)]Y (x)
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Particle Number in Real Scalar Field Theory
Recall that the conjugate momentum for a scalar field Φ can be written as

Π = Dt Φ =
1

B

[
−i µn Rn(~r) e−i µn t an + i µn R

†
n(~r) e i µn t a†n

]
,

which is implicitly summed over n. Dt is a covariant time derivative which gives rise to the metric
function B in the denominator. Then

[Φ(~r),Π(~r ′)] =
2

B
R†n(~r)Rn(~r ′).

The requirement that the commutator be canonically normalized, [Φ,Π] = δ3(~r − ~r ′), is equivalent to a
completeness relation on the Rn functions:∑

n

2

B
µn R

†
n(~r)Rn(~r ′) = δ3(~r − ~r ′)

Given that the Rn functions form a complete set, we can write down a related normalization condition,∫
2

B
µn R

†
n(~r)Rn(~r)

√
|g | d3r = 1
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Binding Energy Corrections to the mass M
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Binding Energy Corrections to N

The particle number is
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Leading Binding Energy Corrections
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in terms of the integrals
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Numerical Values

κ M [kg] R99 [km] d [kg / m3] EB

mN [10−13]
0.01 2.01× 1018 115 311 141
0.09 6.91× 1018 386 28.6 2.93
0.16 1.02× 1019 593 11.6 −3.24
0.25 1.27× 1019 854 4.85 −4.18
0.29 1.31× 1019 972 3.41 −3.99
0.34 1.33× 1019 1077 2.53 −3.71
0.38 1.32× 1019 1183 1.90 −3.39
0.64 1.20× 1019 1652 0.633 −2.25

1 1.03× 1019 2145 0.248 −1.49
4 5.56× 1018 4499 0.0146 −.384

16 2.85× 1018 9062 0.000913 −.109
100 1.15× 1018 22849 0.000023 < 10−2

Table: Macroscopic parameters describing a dilute axion star: mass M, radius R99, average
density d , and reduced binding energy per particle EB/mN, as a function of κ = δ/∆2. To set
the numerical scale we have fixed the QCD parameters m = 10−5 eV and f = 6× 1011 GeV.
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Computing the 3ac → ap Decay Rate
We modify the axion field expansion to include a free axion term

A = R(r)e−i µ0 ta0 +

∫
d3p√
2µp

e i~p·~r−i µp t ap(~p) + h.c .

This leads to the leading-order matrix element

M3 ≡M[N → (N − 3) + 1 emitted]

= m2f 2

∫
dt d3r〈N − 3, p|1− cos

(A
f

)
|N〉

= −i f
m

1√
2µp

∫
dt d3y J3[Z (y)]e i~p·~re i(3µ0−µp)t

= −i 4π2√
2µp

f

p
δ(3µ0 − µp)

∫ ∞
−∞

y sin
(p y
m

)
J3[Z (y)] dy︸ ︷︷ ︸

I3(p)
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The Decay Rate at Weak Binding
Note that the dimensionless momentum k = p/m of the ejected axion is sharply peaked for E −m� m

k3 =
√

9E 2/m2 − 1 ≈
√

8

We find the decay rate for 3ac → ap is

Γ3 =
1

T

∫
d3p

(2π)3(2µp)
|M3|2

=
2π f 2

mk3

∣∣∣I3(k3)
∣∣∣2

I3(k) =

∫ ∞
−∞

y sin
(p y
m

)
J3[Z (y)] dy

=
1

∆2

∫ ∞
−∞

x sin
(k x

∆

)
J3[∆Y (x)] dx

∆�1︷︸︸︷
≈ ∆

48

∫ ∞
−∞

x sin
(k x

∆

)
Y (x)3 dx

In principle, we can use our solutions Y (x) and integrate directly.
In practice, this is made difficult by the rapidly oscillating sin term
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Contour Integration of I3(k)

I3(k3) =
∆

48

∫ ∞
−∞

x sin
(k3 x

∆

)
Y (x)3 dx

Consider the contour integral instead:

Y (x) has no singularities along the real axis

We show that the leading singular term is of the form Ys(x) =
8 yI

x2 + yI 2
with yI ≈ .603

Deforming the contour of integration until we reach i yI , the contribution of this pole dominates
the integral. The result is

I3(k3) = i
32π yI

3∆
exp

(
− k3 yI

∆

)
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Alternative Derivation: Spherical Waves
For our complete set of scattering states, we could have used

φs(t, r) =
1

2π2

∞∑
`=0

∑̀
`z=−`

Y`,`z (r̂)

∫ ∞
0

dp p

2µp
j`(p r) e−i µp ta`,`z (p)

The spherical wave annihilation operators satisfy the commutation relation[
a`,`z (p), a`′,`′z (p′)

]
= (2π)3 2µp δ(p − p′) δ`,`′ δ`z ,`′z .

Note that the annihilation operators in the two bases are related as

a`,`z (p) = i` p

∫
dΩp Y

∗
`,`z (p̂) a(~p),

which can also be inverted,

a(~p) =
1

p

∞∑
`=0

∑̀
`z=−`

i−` Y`,`z (p̂) a`,`z (p).

Both sets of scattering states are precisely equal. One can be derived from the other by using the
expansion of the exponential in spherical harmonics.
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Alternative Derivation: Spherical Waves (2)

The transition matrix element in this basis has the form

Msph
3 = −i m2 f

∫
dt d3r J3

(
2
√
N R(r)

f

)
〈0|φs(t, r)|~p〉

= −i m2 f

∫
dt d3r J3

(
2
√
N R(r)

f

)
√

4π j0(p r) e−i µp t

Although this matrix element is different when using the spherical waves, the decay rate is calculated
using a different integration over phase space,

Γ3 =
1

T

∫
1

(2π)3

dp

2µp
|Msph

3 |
2

and the final answer is the same.
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The Nonrelativistic Limit for Axions
Expand the axion field in the nonrelativistic limit as

A(t, r) =
1√
2m

[
e−i m t ψ(t, r) + e i m t ψ∗(t, r)

]
.

In the axion potential, the nth term is proportional to the factor

A2n =
2nCn

(2m)n
(ψ∗ ψ)n +O(e±i m t),

where 2nCn are binomial coefficients. Dropping the rapidly oscillating pieces, we obtain

W (ψ) = m2 f 2

[
1− cos

(
A
f

)]
− m2

2
A2

→ m2 f 2

[
1−

∞∑
n=0

2nCn (−1)n

(2n)!

( ψ∗ ψ
2mf 2

)n]
− m

2
ψ∗ ψ

= m2 f 2

[
1− ψ∗ ψ

2mf 2
− J0

(√
2ψ∗ ψ

mf 2

)]
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